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Nonlinear noniso thermal  in tegra l  equations a re  const ructed,  connecting the deformat ion  and the po-  
lar iza t ion and optical  quanti t ies  with the s t r e s s .  The poss ib i l i ty  of applying optical  p r o p e r t i e s  to the so lu-  
tion of i so the rma l  and noniso thermal  p rob l ems  of the theory of heredi ty ,  using the method of photovisco-  
e las t ic i ty ,  is evaluated.  The p iezo-opt ica l  effect  in po lymer i c  ma te r i a l s  is due s imul taneous ly  to s t r e s s  
and to deformat ion,  acting as independent p a r a m e t e r s .  To exp re s s  the polar iza t ion  and optical  p r o p e r t i e s  
only in t e r m s  of the s t r e s s  (or only in t e r m s  of the deformat ion) ,  we must  use one or  another  law of the 
mechanics  of po l ym er s  (Hooke 's  law with r ea l  or  complex  moduli,  l inear  or  nonlinear  in tegra l  equations,  
etc.) .  The choice of the theo logica l  law is dictated by the conditions of the deformat ion.  The l inear  optical  
equations a re  well  known. In [1-4] it was postula ted  that they contain o p e r a t o r s  of a theo logica l  type.  In 
[5], an explanation is given of these  equations,  s ta r t ing  f rom the theory  of e l ec t rodynamics ,  the theory  of 
the p iezo-op t ica l  effect ,  and the l inear  theory  of v i scoe las t i c i ty .  With la rge  s t r e s s e s ,  the nonlinear  theory  
of v i scoe las t i c i ty  must  be used.  Thus,  in [6], the i so the rma l  theory  of ageing was used, bear ing in mind 
the p rob l ems  of quas i - e s t ab l i shed  v i scoe las t i c i ty .  We obtain more  genera l  equations using the nonlinear  
heredi ty  theory  and the pr inc ip le  of t e m p e r a t u r e - t i m e  cor respondence .  

1. Starting Optical  Equations.  We l imit  ou r se lves  to the plane p rob l em of e l ec t rodynamics .  Let a 
l ayer  of a nonmagnetic d ie lec t r ic  be pene t ra ted  without l o s ses  by monochromat ic  e l ec t romagne t i c  waves  
no rma l  to the plane of the l ayer  xtx2; the m a t e r i a l  is or iginal ly  opt ical ly  i so t ropic  and homogeneous;  no is 
the r e f r a c t i v e  index of the ma te r i a l .  If the d ie lec t r ic  pe rmeab i l i t y  va r i e s  only sl ightly with deformat ion  Of 
the l ayer ,  the opt ical  path di f ference 5, r e f e r r e d  to the th ickness  of the l aye r ,  and the isocl ine q~, a r e  con-  
nected with the s t r e s s e s  (oij) and the deformat ion  (aij) by the re la t ionships  [5, 7] 

6 c o s  2~ = Ca (0'11 - -  0"22 ) + C~: (811 - -  822), 1/2 6 s i n  2~ = C~0.12 -~  Ce812 (1.1) 

Here  C a and Ce a re  coeff icients  which, in the l inear  theory  of the p iezo-op t ica l  effect ,  a r e  independent 
of the mechanica l  p r o p e r t i e s  and, for  s table m a t e r i a l s ,  a lso of the t ime .  The deformat ions  a re  a s sumed  to 
be smal l .  

It must  be emphas ized  that  the values  of 5 and ~ a re  de te rmined  by the fo rm and the or ienta t ion of 
a sect ion of the d ie lec t r i ca l  el l ipsoid by the plane of the wave  front;  t he re fo re ,  a sha rp  in t e r fe rence  p ic ture  
of the bands and of the isocl ines  can be obtained not only with e las t ic  but with nonelast ic  deformat ion  of the 
l ayer .  

We t r a n s f o r m  to the pr inc ipa l  s t r e s s e s  and deformat ions  in the plane of the layer ;  then, a f t e r  s imple  
t r ans fo rma t ions ,  we obtain exp res s ions  for  5 and ~0, which make it poss ib le  to in t e rp re t  the in t e r fe rence  
p ic ture  of the bands and isoel ines  

~2 = CG2 (~1 - -  r ~ "-~ C~'2 ({~1 - -  ~2) II -~  2CaCt (al - -  ~ )  ( e l  e2) c o s  2 (q~a - -  (P,) 

C a (~1 - -  ~ )  s in  2cpa -{- C~ (el - -  e2) s in 2q) t (~1 >/~2) 

t g  2r = Ca (za -- z 9  cos 2r q- C e (sa - -  e2) cos 2r (8~ >/~) 

Here ,  r  and ~o e a r e  the mechanical  i socl ines .  It can be seen  that,  in genera l ,  the bands a r e  not de-  
t e rmined  by the d i f ferences  o l - a  2 or  e l - e 2 ,  and that  the optical  i socl ines  do not coincide with the mechan-  
ical .  This si tuation will obtain only in an i so t ropic  l aye r  (photoelast ici ty) .  
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Let Hooke ' s  law not be sa t is f ied,  and let the p r e h i s t o r y  of the deformat ion  be a r b i t r a r y .  The fol low- 
ing cases  a re  encountered.  When Ce = 0, the bands a re  de termined by the difference of the pr inc ipa l  s t r e s -  
ses ,  and the opt ical  i socl ines  by the direct ions of the l a t t e r .  If Co-- 0, the bands depend only on the d i f fe r -  
ence of the pr inc ip le  elongations,  and the optical  i socl ines  on the d i rec t ions  of e 4 and ~2. Finally,  when the 
pr inc ipa l  axes  (aij), (eij) in a mechanical ly  i sot ropic  l aye r  are  fixed (tg 2~0cr = tg 2~0e), the optical  i socl ines  
coincide with the mechanica l ,  and the Fylon J e s s o n  law, connecting 5 with o l - o  2 and e l - ~ ,  is sa t is f ied.  
In what follows, we shall  a s s u m e  that  C a r  and Ce ~ 0. 

2.  Rheological  Equations.  In [8-10] it was p roposed  to use the hypothesis  of thermoheologica l ly  
s imple  behavior  in the nonlinear  theory  of v i scoe las t ic i ty ;  in [11], this hypothesis  was ver i f ied  with large 
deformat ions .  Thermoheolog ica l ly  s imple  behavior  is descr ibed  using the reduced  t ime,  ~, which coincides 
with the t rue  t ime  only at some t e m p e r a t u r e  T o chosen as  the s tar t ing  t e m p e r a t u r e  (the r e f e r e n c e  t e m p e r -  
ature) 

t 

(t) = I g iT (n)l d .  
O 

(g (T) > O, 8g (r) [ aT > O, g (To)  ---- i) 

The propor t iona l i ty  coefficient ,  g, plays a ro le  depending on the t e m p e r a t u r e  sca le  of the t ime .  We 
a s s u m e  that g does not depend on the p r e h i s t o r y  of the deformat ion,  the level  of the s t r e s s e s ,  or  the type 
of s t r e s s e d  s ta te .  

In accordance  with the hypothesis  of thermoheologica l ly  s imple  behavior ,  the equations for  the v i s c o -  
e las t ic i ty  of mechanica l ly  i so t ropic  ma te r i a l s  under constant  s t r e s s e s  [12] a r e  descr ibed  in the f o r m  

2~ii(t) = L (~, s)sij,  X/3A = K~m q- er (2.1) 

L (0, s) = t / G, s = + V 1/2 s~sij, ~,,, = l& %~, h = e~ (% = %) 

Here  s is the intensi ty of the tangential  s t r e s s e s ;  Om is the mean p r e s s u r e ;  A is the re la t ive  change 
in the volume; eT is the t h e r m a l  expansion; G is the shea r  modulus; K is the modulus of the hydros ta t ic  
p r e s s u r e ;  L(~, s) is a posi t ive  increas ing  function of i ts  a rguments .  It is a s sumed  that  the volume v a r i e s  
in accordance  with an e las t ic  law. If L(~, s) is r e p l a c e d  by a function of the t ime  I(~), we obtain the wel l -  
known l inear  equations.  

Using (2.1) and a modified summat ion  ru le  [12], we obtain the equations of the nonlinear noniso ther -  
real heredi ty  theory  

t 

2a~j (t) = L (0, s) s u (t) - -  I L~, 1~ --  ~, s (o))l su (o)) do) 
0 

. t 

x/8 A = K~ m q- eT,, ~ = ~ (~), ~,-- ~ = Ig [T (TI)] d~l, ~. ~ = t -- r (T = To) 

(2,2) 

where  L '  is the pa r t i a l  der iva t ive  with r e s p e c t  to the in tegrat ion va r i ab le  co, enter ing into the f i r s t  a rgument  
of the function L[~ - ~ ,  s(co)]. 

3. Pr inc ipa l  Optical Equations.  We subst i tute (2.1) into (1.1) and t r a n s f o r m  to the pr inc ipa l  axes;  then, 
for  constant  s t r e s s e s ,  we obtain 

-I-8(t) = C(~ ,  s) ( ~ 1 - - ~ 2 ) ,  t g 2 ~  = tg2(po (3.1) 

C (~, s) = Co + ~/~ C~L (~, s), C (0, s) = Co + ~/~ C, I a 

The function C(~, s) may be e i ther  posi t ive  or  negat ive.  For  example ,  

(3.2) 

C ( ~ , s ) ~ O  fo~ Ca>O, C .~O,  Ca<[~/~C,L(~ , s ) ]  
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With s t r e s s e s  vary ing  with t ime,  Eqs.  (2.2), and not (2.1), a re  used 

~t 

~5(t)cos 2(p(t)= C(0, s)[att(t)--z2~(t)]-- I C ' '~' . . . .  - -  ~, s (o))l [~u (o)) - -  ~2~ (o))l do) 
D, 

t 

1/26 (t) sin 2~ (t) = C (0, s) ~ ( t ) -  I C~' [~ - -  ~, s (o))] ~ (o)) d~0 
0 

(3.3) 

Within the f r a m e w o r k  of the theory  of the p iezo-op t ica l  effect ,  the optical  and rheologica l  o p e r a t o r s  
a r e ,  in accordance  with (3.2), in terconnected  by a ve ry  s imple  re la t ionship .  If the p iezo-op t ica l  coeff icients  
C a and C a do not depend on the t e m p e r a t u r e ,  as  is t rue ,  for  example ,  for  celIuloid or  epoxy r e s in ,  not only 
the mechanical  but also the opt ical  p r o p e r t i e s  will be thermoheologica l ly  s imple ,  and the t e m p e r a t u r e  sca les  
of the t ime  will be found to be identical  for  both mechanica l  and optical  quanti t ies .  

4. Monoaxial E l o n g a t i o n - C o m p r e s s i o n .  We designate  the component  of the s t r e s s  which dif fers  f r o m  
zero ,  and the cor responding  component  of the deformat ion ,  by a and e. In accordance  with (1.1) and (2.1), 
we have 

8 = Cla  4-  C ,e  (~ = 0), - - ~ ] =  Cxz + C2e (q~ = 90") 

e = ~ - -  e r ,  C x ' =  Ca - -  1/, C , K ,  C~ = */,  C ,  

In accordance  with (2.1), (3.1), and (4.1), at  a = const ,  we obtain (see [121) 

(4.1) 

e (t) = x/3 [L (~, 1/a If3-1 a I) q- K]  ~ = D (~, a) (4 .2 )  

s----~/31/'3-1~1,  D ( 0 ,  ~) = a l e  

:~8(t)  = C(~, x/, V~-[ai) a = j (~ ,  a) (4.3) 

J (~, a) = Q ~  4- C~D (~, a), l (0, a) = (C, q- C~ ] E) a (4.4) 

H e r e ,  E is the Young modulus.  In accordance  with (4.2) and (4.3), the mechanica l  and opt ical  p r o p e r -  
t ies  with e l o n g a t i o n - c o m p r e s s i o n  a r e  a s s u m e d  to be identical .  In the ease  of a s t r e s s  which v a r i e s  in t ime  

t 

e (t) = D [0, a (t)]  - -  i D . '  [~ - -  ~, a (o))] do) 
O 

t 

4 -  6 (t) ---- J [0,  a (t) l  - -  i l '  1~ - -  ~' a (o~)1 da~ 
0 

(4.5) 

5. Applicat ion of (3.3) in Photomechanics .  The optical  equations play in photomechanics  the s ame  
ro le  as the de te rmin ing  equations in the mechanics  of de fo rmed  bodies;  (3.3) a r e  the p r inc ipa l  equations of 
the method of photoviscoe las t ic i ty .  

The mechanical  and optical  c h a r a c t e r i s t i c s  of the m a t e r i a l s  of models  can be found, for  example ,  f r o m  
expe r imen t s  on samples  a t  constant  loads and t e m p e r a t u r e s ;  m e a s u r e m e n t s  must  be made of e(t) and 6(t) 
at succes s ive  moments  of t ime .  Using a plot  in the coordinates  e( t ) /a ,  5(t ) /o ,  the coeff icients  C1, C2, and 
Ce a re  found, the degree  of the i r  t e m p e r a t u r e  dependence is es tabl ished,  and the region of the l inear  p i ezo -  
optical  effect  is de te rmined .  If the modulus K is known, Co may also be calculated.  A compar i son  of the 
curves  for  e ( t ) / a  and 5( t ) /a  on a logar i thmic  t ime  sca le  makes  it poss ib le  to plot  a s epa ra t e  supe r imposed  
curve  for  each s t r e s s ,  to de te rmine  g(T), and to find the region of nonlinear  v i scoe las t i c i ty  for  each t e m -  
p e r a t u r e .  In accordance  with (4.2) the cu rves  of e(t) define the mechanica l  functions D(~, s) and L(~, s),  
while, in accordance  with (4.3), the cu rves  of 8(t) c~efine the opt ical  functions J(~, s) and C(~, s) at s = 1/3 
~31al.  Another  method for  obtaining the opt ical  functions is by the use of the p iezo-op t ica l  coeff ic ients  and 
the mechanica l  functions, in accordance  with (3.2) and (4.4). 

After  the functions C(~, s) and g(T) have been defined, Eqs.  (3.3) can be applied to the solution of plane 
p rob l ems  of the nonlinear  heredi ty  theory  of v i scoe las t i c i ty ,  independently of whether  or  not t he re  is any 
cons iderable  amount  of t he rmomechan i ca l  in teract ion.  In the exper imen t s ,  5it), ~(t),  and T(t) must  be r e -  
corded~ In the calculat ions,  one of the approx imate  methods is used,  and the functions C and g can be found 
in tables .  
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In the case of the investigation of stresses at free contours, with a plane state of stress, the problem 

reduces to the numerical solution of a nonlinear integral Volterra equation of the second kind (4.5). Inves- 
tigations within the region are more complex. As a rule, 6(t), ~o(t), and T(t) must be measured not only in 
the cross section being investigated, but also in one or two other closely located auxiliary sections. In the 
case of quasi-statistical problems, Eqs. (3.3) are supplemented in the calculation by a differential equilib- 
rium equation. Since the function C depends on s, the problem cannot be solved in two steps (as in the meth- 
ods of photoelasticity and linear photoviscoelasticity); at first oli-a22 and ~12 are found using the optical 
equations, and then, using the differential equilibrium equation, all and ff22 are found. The system of three 
equations must be solved simultaneously. 
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