BASIC EQUATIONS OF THE METHOD OF PHOTOVISCOELASTICITY

I, I. Bugakov

Nonlinear nonisothermal integral equations are constructed, connecting the deformation and the po-
larization and optical quantities with the stress. The possibility of applying optical properties to the solu-
tion of isothermal and nonisothermal problems of the theory of heredity, using the method of photovisco-
elasticity, is evaluated. The piezo-optical effect in polymeric materials is due simultaneously to stress
and to deformation, acting as independent parameters. To express the polarization and optical properties
only in terms of the stress (or only in terms of the deformation), we must use one or another law of the
mechanics of polymers (Hooke's law with real or complex moduli, linear or nonlinear integral equations,
etc.). The choice of the rheological law is dictated by the conditions of the deformation. The linear optical
equations are well known. In [1-4] it was postulated that they contain operators of a rheological type. In
[5], an explanation is given of these equations, starting from the theory of electrodynamics, the theory of
the piezo-optical effect, and the linear theory of viscoelasticity. With large stresses, the nonlinear theory
of viscoelasticity must be used. Thus, in [6], the isothermal theory of ageing was used, bearing in mind
the problems of quasi-established viscoelasticity. We obtain more general equations using the nonlinear
heredity theory and the principle of temperature-time correspondence.

1. Starting Optical Equations. We limit ourselves to the plane problem of electrodynamics. Let a
layer of a nonmagnetic dielectric be penetrated without losses by monochromatic electromagnetic waves
normal to the plane of the layer x;x,; the material is originally optically isotropic and homogeneous; ng is
the refractive index of the material. If the dielectric permeability varies only slightly with deformation of
the layer, the optical path difference §, referred to the thickness of the layer, and the isocline ¢, are con-
nected with the stresses (ojj) and the deformation (£3;) by the relationships [5, 7]

8 cos 29 = C5 (04 — 0y3) + Ce (8yy — £2), o 0 5in 29 = C504y + Cetyy (1.1)

Here C and C. are coefficients which, in the linear theory of the piezo-optical effect, are independent
of the mechanical properties and, for stable materials, also of the time. The deformations are assumed to
be small, .

It must be emphasized that the values of 6 and ¢ are determined by the form and the orientation of
a section of the dielectrical ellipsoid by the plane of the wave front; therefore, a sharp interference picture
of the bands and of the isoclines can be obtained not only with elastic but with nonelastic deformation of the
layer.

We transform to the principal stresses and deformations in the plane of the layer; then, after simple
transformations, we obtain expressions for § and ¢, which make it possible to interpret the interference
picture of the bands and isoclines

8% = Cg? (0 — 63)* + Ci® (81 — €9)* + 2CCe (61 — 65) (B1 — £2) 005 2 (Ps — Fe)
9 Cy (o1 —62)sin 295+ C, (81 —2)5in 29, (51> 63) -
tg 29 = C, (61— o) 008 2@, + £, (e1— e2) 005 29, (813> &3)

Here, ¢4 and ¢¢ are the mechanical isoclines. It can be seen that, in general, the bands are not de-
termined by the differences oy —0, or & —¢,, and that the optical isoclines do not coincide with the mechan-
ical. This situation will obtain only in an isotropic layer (photoelasticity).
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Let Hooke's law not be satisfied, and let the prehistory of the deformation be arbitrary. The follow-
ing cases are encountered. When Cg =0, the bands are determined by the difference of the principal stres-
ses, and the optical isoclines by the directions of the latter. If C¢ =0, the bands depend only on the differ-
ence of the principle elongations, and the optical isoclines on the directions of g and &,. Finally, when the
principal axes (oij), (g5) ina mechanically isotropic layer are fixed (ig 294 = tg 2¢ ), the optical isoclines
coincide with the mechanical, and the Fylon Jesson law, connecting § with o;—0, and &;—«,, is satisfied.
In what follows, we shall assume that C5=0, and Cg = 0.

2. Rheological Equations. In [8~10] it was proposed to use the hypothesis of thermoheologically
simple behavior in the nonlinear theory of viscoelasticity; in [11], this hypothesis was verified with large
deformations. Thermoheologically simple behavior is described using the reduced time, £, which coincides
with the true time only at some temperature T, chosen as the starting temperature (the reference temper-~
ature)

t
t)={glTmidn D>0, s@or>0, gry=1)

0

The proportionality coefficient, g, plays a role depending on the temperature scale of the time. We
assume that g does not depend on the prehistory of the deformation, the level of the stresses, or the type
of stressed state.

In accordance with the hypothesis of thermoheologically simple behavior, the equations for the visco-
elasticity of mechanically isotropic materials under constant stresses [12] are described in the form

29 (t) = L (8, 8)sj» YsA = Koy + &7 2.1)
L(Ov §) = 1/G, s= +V1/z $ii8ijv Om = Ygou, A=zgy (95 =@,)

Here s is the intensity of the tangential stresses; oy is the mean pressure; A is the relative change
in the volume; T is the thermal expansion; G is the shear modulus; K is the modulus of the hydrostatic
pressure; L{£, s) is a positive increasing function of its arguments. It is assumed that the volume varies
in accordance with an elastic law. If L(, s) is replaced‘ by a function of the time I(¢), we obtain the well-
known linear equations.

Using (2.1) and a modified summation rule [12], we obtain the equations of the nonlinear nonisother-
mal heredity theory

t

203, (£) = L (0, ) s;; (1) — S LL [E— L. 5 (0)] 835 (0) doo @.2)

L]

. t
s A = Koy + &7, L =E(0), §~€=S,g[T(n)]dn. E—{=t—0 (T=Ty

where L! is the partial derivative with respect to the integration variable w, entering into the first argument
of the function L[£ —£, s(w)].

3. Principal Optical Equations. We substitute (2.1) into (1.1) and transform to the principal axes; then,
for constant stresses, we obtain

8 (@) =CE, 5) (o0, — a%), tg 20 = tg 2¢s (3.1)

CE 5)=Co+YoCL(E,5), C0,8)=Co+3Ce |G (3.2)

The function C(¢, s) may be either positive or negative. For example,

CE,8)<<0 for Co>0, C,<C0, Cs<{Y,CL(E, s)|
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With stresses varying with time, Eqgs. (2.2), and not (2.1), are used

ki 4

B(t)cos 2q(t)=C(0, s)[o;1(t)—Gaa(t)1— S Co’ 1= §, 5(0)] [611 (@) — G35 ()] doo
0,

/36 (t) sin 29 (t) = C (0, s) 615 (2) — SCm' [E—& s(®)] o1 (0) do (3.3)

0

Within the framework of the theory of the piezo-optical effect, the optical and rheological operators
are, in accordance with (3.2), interconnected by a very simple relationship. If the piezo~optical coefficients
Cg and Cg do not depend on the temperature, as is true, for example, for celluloid or epoxy resin, not only
the mechanical but also the optical properties will be thermoheologically simple, and the temperature scales
of the time will be found to be identical for both mechanical and optical quantities.

4. Monoaxial Elongation—Compression. We designate the component of the stress which differs from
zero, and the corresponding component of the deformation, by ¢ and £. In accordance with (1.1) and (2.1),
we have

8=Co+Coe (¢=0), —B=Cis+Cie (p=90) (4.3)
e=e—eT, C("=C;—1,CK, C,=3,C

In accordance with (2.1), (3.1), and (4.1), at ¢ = const, we obtain (see [12])

e()="5ILE s V3|s)+ Kls=DE, o) (4.2)
s=V3|sl, D(O,s)=06/E

£8@) =CE V3 [s])a=T(E o) (4.3)

JE 0)=Co+CDE 6, J(0, 0)=(C+C/E)o (4.4)

Here, E is the Young modulus. In accordance with (4.2) and (4.3), the mechanical and optical proper-
ties with elongation—compressionare assumed to be identical. In the case of a stress which varies in time

¢t
e(t)=DI[0,5(t)] — { D’ [t — 1, o (0)] do
0

t
+8(8) = J0, (1)) — I’ [E— L, 6(0)] do @.5)
0

5. Application of (3.3) in Photomechanics. The optical equations play in photomechanics the same
role as the determining equations in the mechanics of deformed bodies; (3.3) are the principal equations of
the method of photoviscoelasticity.

The mechanical and optical characteristics of the materials of models can be found, for example, from
experiments on samples at constant loads and temperatures; measurements must be made of e(t) and 5(t)
at successive moments of time. Using a plot in the coordinates e(t)/o, 5(t) /o, the coefficients Cy, C,, and
Cg are found, the degree of their temperature dependence is established, and the region of the linear piezo-
optical effect is determined. I the modulus K is known, Cg may also be calculated. A comparison of the
curves for e(t)/c and 5(t)/o on a logarithmic time scale makes it possible to plot a separate superimposed
curve for each stress, to determine g(T), and to find the region of nonlinear viscoelasticity for each tem-
perature. In accordance with (4.2) the curves of e(t) define the mechanical functions D¢, s) and L(¢, s),
while, in accordance with (4.3), the curves of 5(t) define the optical functions J(&, s) and C(¢, s) at s =Y/
v8lo|. Another method for obtaining the optical functions is by the use of the piezo-optical coefficients and
the mechanical functions, in accordance with (3.2) and (4.4).

After the functions C(£, s) and g(T) have been defined, Eqs. (3.3) can be applied to the solution of plane
problems of the nonlinear heredity theory of viscoelasticity, independently of whether or not there is any
considerable amount of thermomechanical interaction. In the experiments, 6(t), ¢(t), and T(t) must be re-
corded. In the calculations, one of the approximate methods is used, and the functions C and g can be found
in tables.
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In the case of the investigation of stresses at free contours, with a plane state of stress, the problem

reduces to the numerical solution of a nonlinear integral Volterra equation of the second kind (4.5). Inves-
tigations within the region are more complex. As a rule, 5(), ¢(t), and T(t) must be measured not only in
the cross section being investigated, but also in one or two other closely located auxiliary sections. In the
case of quasi-statistical problems, Egs. (3.3) are supplemented in the calculation by a differential equilib-
rium equation. Since the function C depends on s, the problem cannot be solved in two steps (as in the meth~-
ods of photoelasticity and linear photoviscoelasticity); at first o;;~0,, and 0y, are found using the optical
equations, and then, using the differential equilibrium equation, 0y; and gy, are found. The system of three
equations must be solved simultaneously.
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